Finite State Machines II

Review: Formal definition
· A Finite State Machine (FSM) is a tuple (Q,S,d,s,F) where

· Q - alphabet of state symbols

· S – alphabet of input symbols

·
[image: image1.wmf]:

QQ

d

´å®

 - transition function (total or partial)

·
[image: image2.wmf]sQ

Î

 - starting state

·
[image: image3.wmf]FQ

Í

 - final state(s)

More Example
· FSM for

· Recognizing (ab)* and (ab)+

· Recognizing (ab)+(c|cb)

· Language over ab for all strings that do not have 2 consecutive a’s

Non-determinisitc FSM

· ND Finite State Machine (FSM) is a tuple (Q,S,d,s,F) where

· Q – alphabet of state symbols

· S – alphabet of input symbols

·
[image: image4.wmf]:

QQ

d

´å´

 - transition relation (total or partial)

·
[image: image5.wmf]sQ

Î

 - starting state

·
[image: image6.wmf]FQ

Í

 - final state(s)

ND-FSM example
· Recognize (a|b)*p(a|b)* with p = ababa

· Recognize L1 union L2

ND-FSM computational power

· Theorem: ND-FSM are no more powerful than FSM

· Construction: there exists an algorithm to convert a ND-FSM M to a FSM N which accepts the same language.

· Idea: use the set of all subsets of states of M as the set of states of N

· Lots of states! But most can be ‘simplified’

Regular Expressions (syntax)

· Definition: a regular expression E over an alphabet S is defined as
· A where a is in S
· (F|G) where F and G are regular expressions
· (FG) where F and G are regular expressions
· F* where F is a regular expression
· F+ where F is a regular expression
· () will be dropped if unambiguous
Examples of Res

· (ab)*, (ab)+

· (a|b)*ababa(a|b)*

· Contrast: a*b* and (a|b)* and a*|b*

Some set operations
· Define (and/or recall) the following set operations. Let F and G be sets of words over an alphabet.

· F union G = {w| win F or win G}

· FG = {wz|ww in F and z in G} (conceatenation)

· F* = {} union F union FF union FFF. . .

· F+ = F union FF union FFF. . .

Languages defined by Res
· Definition: Let E be a regualar expression over S. L(E) is defined as

· If E = a where a is in S, then L(E)={a}

· If E = {F|G} then L(E) = L(f) union L(G)

· If E = (FG) then L(E) = L(F)L(G)

· If E = F* then L(E) = L(F)*

· If E = F+ then L(E) = L(F)+

· With the meaning for the set operations defined previously.

Operations on FSM
· Given FSM M and N, it is possible to construct another FSMP which ‘implement’ the following operations:

· P st L(P) = L(M) union L(N)

· P st L(P) = L(M)L(N)

· P st L(P) = L(M)*

· P st L(P) = L(M)+

More operations
· With some extra work, can show that we can also implement intersection and complement.

· These languages (defined either by Res or FSM) are called regular languages.

Things that are not regular
·
[image: image7.wmf]{

}

|0

jj

abj

³

 is not regular

· Palindromes

If time permits
· Pumping Lemma

_1112213451.unknown

_1112213598.unknown

_1112213662.unknown

_1112214567.unknown

_1112213649.unknown

_1112213472.unknown

_1112213286.unknown

